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Abstract: Microbes are responsible for the production of primary and 
massive secondary metabolites of the marine ecosystem. The great 
diversity of microorganisms in the oceans plays a significant role on the 
regulation of biogeochemical cycles. The role and function of 
microorganisms in climate change have not been thoroughly investigated, 
despite - anthropogenic causes and consequences of the gases have 
gained substantial attention. Previous studies that assessed the role of 
marine microorganisms under different environmental conditions revealed 
that marine microbes had a major effect on climate change. Therefore 
microorganisms should be considered as the viable candidate in 
indicating climate change and related assessments. Microbes have 
played a major role in the evolution of the earth by influencing the quantity 
of greenhouse gases in the atmosphere, such as carbon dioxide (CO2), 
methane (CH4), and nitrous oxide (N2O). Microbes are excellent model to 
review the impact of climate alteration scenarios on detoxification process 
in marine environment due to their inherent characteristics, including their 
quick generation time, small size, and operational role in biogeochemical 
cycles. This chapter focus on the potential of marine microbes as “early 
warning indicators” for the climate change. 

Keywords: Climate change, marine microbes, bioindicators, pollution, 
biogeochemical cycles. 

1. Introduction 

Biological indicators, also referred to as indicator 
species, are organisms that are able to be used to monitor 
changes in the environment and habitat conditions for 
particular niches (McGeoch and Chown, 1998, De Cáceres 
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et al., 2010). Kolkwitz (1908) developed one of the first 
signal systems to gauge the level of contamination in 
waterways by looking for the existence of saprophytic 
(ciliates and flagellates) and macroorganisms (e.g. insect 
larvae, molluscs, bivalves, annelids, and crustaceans). 
Marine systems' responses to climate change will depend 
on how they interact with other human-caused 
disturbances to the oceanic environment. For example, 
worldwide fishing has reduced the population of huge fish 
at more complex trophic levels (Jackson et al., 2001, 
Myers and Worm, 2003) even if more commercial, 
domestic, and agricultural activity has led to the nutrient 
rich of many coastlines (Schindler, 2006).  

Microorganisms are essential to the worldwide 
food chain, agriculture, plant and animal health, continuous 
supply of nutrients and carbon, and the well-being of 
humans. They are the only living forms can be found in 
certain places, such as the depths below and "extreme" 
habitats, yet they exist in every ecological niche on earth. 
Microorganisms have been on Earth for at least 3.8 billion 
years before life began, and it is likely that they will persist 
long after any potential extinction events. Since then, a 
number of biomonitoring initiatives have been created and 
successfully implemented in estuarine and freshwater 
ecosystems by evaluating indicator species within the 
macrobenthic invertebrate community, such as AUSRIVAS 
(Australian River Assessment Scheme), RIVPACS (River 
Invertebrate Prediction and Classification System), 
SIGNAL (Stream Invertebrate Grade Number Average 
Level), (European Union Water Framework Directive). 
Biomonitoring techniques used to monitor the coral reef 
which is considered as an important species in ocean to 
maintain the marine ecosystem significantly (Cooper et al., 
2009).  

The influence of marine biota on climate variations 
was only briefly discussed in Intergovernmental Panel on 
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Climate Change, then, the possibility of several marine 
biota reactions to climate/environmental change and 
feedback to the climate system has come into greater 
focus. Compared to terrestrial plants, marine 
phytoplankton has far higher turnover rates and is 
distributed across a larger surface area, making it less 
susceptible to seasonal fluctuations (Behrenfeld, 2014). 
Due to the significant contribution of microbes to the 
generation and consumption of CO2, CH4, and other 
greenhouse gases, they known as the main drivers of 
climate changeand also thought to be more reactive than 
plants and animals (Panikov, 1999). On a global scale, 
phytoplankton reacts to climatic changes quickly according 
to the scientific reports (Litchman et al., 2012). 

The phytoplankton bloom cycles, which are 
influenced by both top-down (such as grazing and viruses) 
and bottom-up (such as the availability of vital nutrients 
and vertical mixing) controls, make it difficult to predict how 
climate change would affect primary productivity (Hutchins 
and Boyd, 2016, Behrenfeld, 2017). According to a story in 
Down to Earth (February 28, 2001), the Chloralkali factory 
in Tamil Nadu (Southern India) is dumping wastewater into 
the Gulf of Mannar and Palk Bay. As a result, heavy metals 
such as lead, cadmium, and mercury have been found in 
the local water bodies.  

The contaminations eventually result in 
environmental problems, such as the elimination of the 
renowned pearl-bearing oysters which are indigenous in 
the area (Selvin et al., 2009). Therefore, appropriate 
biological markers are needed to track pollution and its 
effects on the establishment and survival of local flora and 
fauna. The current level of research about the broad 
effects of marine microbes on climate change as well as 
various environmental stresses is summarized in our 
paper. 
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1.1. Why marine microbes called bioindicators? 

Naturally occurring bioindicators are a crucial tool 
for identifying environmental changes, both positive and 
negativeeffects on human society. They are used to 
evaluate the health of the environment as well as to 
monitor environmental changes. The transmission of light, 
the presence of water, temperature, and suspended 
particles are some of the variables that control the 
presence of bioindicators in the environment. By using 
bioindicators, forecast prediction is possible in a region's 
ecological state or the extent of contamination (Khatri and 
Tyagi, 2015).  

The biological indicator must respond to pollution 
quickly and correctly, be suitable for the intended use, and 
recognize changes in an ecosystem caused by poor 
management, inappropriate land use, pollution, and/or 
climatic changes. Microorganisms are frequently utilized in 
assessing ecosystem contamination in marine and coastal 
settings because of their rapid development, faster 
reaction to pollution, even at low levels, and show clear 
indicators of ecosystem alterations. Furthermore, because 
of their abundance in maritime habitats, they are easy to 
recognize and readily available (Gerhardt, 2002, Khatri 
and Tyagi, 2015). Microbiota is much easier to monitor 
than any other species, although their regulation might 
merely be a result of poisons making their communities 
better. The microbial consortium can regulate pollutants in 
the ecosystem by modifying its activity levels, biomass, 
and group composition, which is a mixture of bacteria. 
These factors are crucial in determining how well-
developed a certain ecosystem (Butterworth et al., 2001). 
The comparative diversity study of marine microbial 
populations as a whole represents, today, as molecular 
technologies and their accompanying computer 
methodologies evolve, a significant indicator of the 
consequences of human interference on marine 
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ecosystems. Utilizing DNA-based molecular techniques 
that span the entire population, diversity loss may be easily 
tracked for a very long time (Dupont et al., 2007). In 
conjunction with computer-based analysis of such data, 
marine ecological (meta) genomics may develop 
rarefaction curves that are in fact indicative of 
consequences at an ecosystemic scale. Additionally, the 
identification of mechanisms utilized by bacteria to respond 
to environmental changes and adapt to human demands, 
as well as -omic based analyses of the metabolic 
behaviors of microbial communities, may be used for 
environmental monitoring purposes: The evolution of 
response-specific functional indices using microbial 
biodiversity as a starting point integrates intricate 
interactions across microbial communities (Desrosiers et 
al., 2013). 

 

Figure 1. Marine microbial functions towards climate change 

1.2. Marine microbes: Environmental pollution 
indicators 

Certain pollution-indicating water quality 
measures, including aerobic heterotrophic bacteria, total 
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coliform (TC), faecal coliform (FC), dissolved oxygen (DO), 
and nutrients, are used to analyse marine environmental 
pollution (NO2-N, NO3-N, NH4-N and PO4-P). When 
compared to their corresponding values in the open sea, 
DO and nutrient concentrations in the water at various 
sample points vary significantly (Turki and Mudarris, 2008). 
In many regions of the world, aquaculture activities are 
expanding quickly, raising awareness of and concern for 
their possible effects on the coastal marine environment 
and leading to significant management applications (Barg 
and Phillips, 1998). Recreational waters typically have a 
variety of microorganisms, whether they are naturally 
occurring or come from outside sources including sewage, 
industry, farming, and other industrial activities. When a 
sufficient amount of a pathogen colonises an ideal growth 
location in the body and causes an illness, this microbial 
mixture could be dangerous for swimmers (WHO, 1998, 
Elmanama et al., 2005).  

The existence of many species, including plants, 
insects, fish, bacteria, and viruses, is evaluated using 
biological methods as an environmental indicator. Some 
bacterial species, such as Coliform, Escherichia coli, 
Streptococcus sp., Pseudomonas sp., Vibrio sp., Clostridia 
sp., Bifidobacterium pseudolongum, Arcobacter sp., 
Thiobacillus sp., and others, have been utilised as 
indicators in the monitoring of environmental quality. The 
bacteria are markers of several types of pollution, such as 
heavy metal, petroleum, and other types of pollution, as 
well as domestic trash (human and animal waste) and 
waste from households (Sumampouw and Risjani, 2014). 
As a possible indicator organism, the bacteria linked to the 
sea sponge Fasciospongia cavernosa were assessed to 
monitor the environmental quality.  Bacteria demonstrated 
resistance to the heavy metals, including Streptomyces sp. 
(MSI01), Salinobacter sp. (MSI06), Roseobacter sp. 
(MSI09), Pseudomonas sp. (MSI016), Vibrio sp. (MSI23), 
Micromonospora sp. (MSI28), Saccharomonospora sp. 
(MSI36) (Selvin et al., 2009).  
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One of 24 congeners, the worldwide species 
Corollospora maritime is the only one that is frequently 
seen on sandy beaches in temperate and tropical waters. 
This species possesses qualities that make it a good 
indicator that might be used to monitor changes and 
assess ecological damage on sandy coastal beaches 
(Kohlmeyer and Kohlmeyer, 1979). Because it is 
acknowledged as a natural prey for many species and 
since the International Organization for Standardization 
(ISO) has normalized its use, the calanoid copepod 
Acartiatonsa can be used as a bioindicator (Støttrup and 
McEvoy, 2003). Naturally occurring microbial communities 
may be useful indicators of ecological balance and 
facilitate delicate environmental pressure predictions. 

Table 1. Marine microbes as pollution indicators 
 

Microbial indicators Location Contaminant References 

Streptomyces sp. and 
Saccharomonospora sp. 

Gulf of Mannar Cd and Hg 
Selvin et al., 
2009 

Vibrio fischeri 
In vitro 

Mediterraneanla
guna 

Wide range of 
chemicals 

Pathogens 

Parvez et al., 
2006 

Fecal coliforms, Escherichia 
coli, enterococci, somatic 
coliphages, and F+-specific 
coliphages 

South Florida 
beach 

Fecal 
Bonilla et al., 
2007 

Escherichia coli, Enterococcus 
spp., 

Goa, central 
west coast of 
India 

Sewage-
pollution 

Nagvenkar and 
Ramaiah, 2009 

Oleiphilus messinensis 

Harbor 
sediments 
(Messina Italy) 

Hydrocarbon-
degrading 

Yakimov et al., 
2007 

Thiobacillus sp. Gulf ofManado 
Mercury (Hg) 
pollution 

Ijong and 
Suwetja, 2003 

Chromatium sp. 
Niger mangrove 
ecosystem 

Crude oil 
pollution 

Essien and 
Antai, 2009. 

Kocuria palustris, Bacillus 
pumilus and Bacillus subtilis 

Pelagic waters 
Degrade low-
density 
polyethylene 

Harshvardhan 
and Jha, 2013 

Vibrio spp., Aeromonasspp., 
Campylobacter spp. and 

Arcobacter spp. 

Mandovi and 
Zuarithe central 
west coast of 
India 

Sewage-
pollution 

Nagvenkar and 
Ramaiah, 2009 
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2. Climate change: various factors affecting marine 
microbes  

The stringent physiological thresholds that marine 
bacteria have also make them susceptible to even minor 
changes in temperature, nutrition, salinity, oxygen, and a 
variety of anthropogenic pollutants. These factors make 
microbes excellent markers for warning about manmade 
stressors such as climate change in the marine ecosystem. 

2.1. Impact of temperature 

A significant component causing the range shifts of 
marine creatures due to climate change is changing ocean 
temperatures (Thomas et al., 2012). There has been a lot 
of research done on how sensitive pathogenic bacteria 
react and respond to high temperatures. Increased 
pathogen prevalence and virulence, the facilitation of novel 
pathogen invasions, or decreased host adaptability and 
resilience are all effects of elevated seawater temperatures 
that can have an impact on the frequency and severity of 
disease outbreaks (Sutherland et al., 2004). As 
temperatures rise, oxygen levels drop, and metabolic rates 
rise, potentially putting some creatures under increased 
respiratory stress. The intriguing possibility that a decline in 
the well-being of the host organisms may be the cause of a 
rise in the prevalence of illnesses linked with elevated 
seawater temperatures is raised by the fact that outbreaks 
of disease appear to be caused by a wide species of 
pathogens, including viruses, bacteria, fungi, and parasites 
(Webster and Hill, 2007, Dutta and Dutta, 2016). 
Alternatively, as is the case with the coral parasite Vibrio 
shiloi, rising temperatures may change a pathogen's 
virulence pathways. The pathogenicity of this coral 
pathogen has been the subject of extensive research 
(Toren et al., 1998). Temperature fluctuations may have an 
effect on important biological functions. For example, the 
spread, plenty, biology, and yield of phytoplankton 
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communities worldwide are changed in response to 
warming, acidifying, and stratifying oceans (Ducklow et al., 
2009, Polovina et al., 2008). Although Trichodesmium and 
Crocosphaera may perish from portions of their existing 
tropical habitats where future warming may surpass their 
maximum thermal tolerance limits, thermally induced 
changes towards higher latitudes are also predicted for N2-
fixing cyanobacteria (Breitbarth et al., 2007, Thomas et al., 
2012). Both marine and freshwater microalgae are affected 
by temperature in terms of growth rates. These creatures 
react spontaneously to climatic changes (Butterwick et al., 
2005). On shorter durations, these changes first appear as 
changes in the aquatic algae species, but longer 
timescales can result in changes to algal assemblages 
(McCormick and Cairns, 1994). 

2.2. Impact of Ocean acidification (OA)  

Numerous microbial functions can be impacted 
directly or indirectly by a cascade of consequences 
brought on by non-microbial groups' reactions and/or 
modifications to the chemistry of saltwater. While the 
phrase "ocean acidification" describes the decrease in pH, 
it is not an indication that the ocean's surface waters are 
going to become acidic (that is, below 7) (Caldeira and 
Wickett, 2003). If current trends in CO2 emissions continue 
to climb, the pH of the world's surface waters could 
decrease by about 0.4 units by the end of the millennium 
compared to before industrialization periods (Orr et al., 
2005). The microbial communities that are linked with the 
coral, for instance, may be impacted by this physiological 
pH change, which could then have an impact on the 
physiology and health of the coral. pH levels of 7.3 and 8.2 
(ambient seawater) were used in the study to compare the 
bacterial communities in the coral Acroporaeurystoma's 
mucus, tissue, and skeleton changed as a result (Meron et 
al., 2011). Joint et al. (2011) stated recently that marine 
biogeochemical processes driven by phytoplankton, 
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bacteria, and archaea will not undergo catastrophic 
alterations because microbial assemblages have always 
experienced fluctuating pH environments. In a meta-
analysis of published data, Liu et al. (2010) hypothesised 
that modifications to microbial structure and function are 
possible. Ocean acidification may also affect other parts of 
the nitrogen cycle in addition to nitrogen fixation. Ammonia 
fluctuations caused by pH can have an impact on 
nitrification (NH3), which plays major role in ocean 
acidification. According to Beman et al. (2010), nitrification 
rates may drop by 3-44% within a few decades. These 
experiments have shown that the changes in bacterial 
activity and abundance under conditions of elevated PCO2 

can be caused by phytoplankton shifts (Grossart et al., 
2003, Allgaier et al., 2008). On the other hand, increased 
CO2 levels may alter the algal community's composition 
and intensity of competition. The resulting effect would be 
the culmination of intricate interactions between 
environmental elements such as climate change and other 
factors (Beardall and Raven, 2004). The distribution of 
algae species is a significant effect. Hence, it is important 
to address the effect of ocean acidification on microbial 
function with closer attention to local or regional conditions. 

2.3. Impact of Ultraviolet radiation (UVR) 

The ability of various bacterial groups to repair 
UVR-induced damage and their susceptibility to UVR has 
also been demonstrated to vary (Fernández Zenoff et al., 
2006, Santos et al., 2012). Since bacteria in aquatic 
environment have basic haploid genomes that offer little to 
no functional redundancy, UVR is a significant stressor for 
these organisms (Garcia-Pichel, 1994). In a number of 
aquatic habitats, gammaproteobacteria have been found to 
be the group that is mostly resistant to UV (Alonso-Sáez et 
al., 2006, Santos et al., 2012). The Bacteroidetes group 
has been found to be UV resistant in field experiments 
(Alonso-Sáez et al., 2006) whereas, the 
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Alphaproteobacteria group noted to be UV-sensitive 
(Alonso-Sáez et al., 2006). The SAR11 cluster of 
Alphaproteobacteriamay be the highly widespread group of 
heterotrophic marine bacteria was discovered to be 
especially vulnerable to solar UVR (Ruiz-González et al., 
2012). Recent observations of the elimination of 
Pelagibacter-affiliated sequences in wild Patagonian 
bacterioplankton groups after 8-day exposure to PAR, 
PAR+UVA, and PAR+UVA+UVB provide more evidence 
for the SAR11 group's UV sensitivity (Manrique et al., 
2012).  

The biogeochemical effects of increased UVR 
depend critically on the varying UVR sensitivity displayed 
by the most prevalent bacterial species in the 
bacterioplankton. Comparative studies on several 
phytoplankton species' swimming habits (avoidance 
tactics) also revealed significant interspecies variation. 
After two to three hours of exposure to solar radiation, 
some species, which were less vulnerable to UV radiation 
and tended to gather close to the surface, start to slow 
down and produce less motile cells. Additionally, when 
irradiances are strong (local noon), cells travel deep in the 
water column (Richter et al., 2007). Issues related to 
climate change, such as the shallowing of the upper mixed 
layer, may alter swimming behavior by preventing cells 
from migrating deep into the water column, favoring UV-
resistant species. Therefore, the main markers of climate 
change are modifications in the structure of the bacterial 
community brought on by increased UVR. 

3. Marine microbial responses to climate change 

The bacteria have also been impacted by the 
numerous changes that microorganisms have caused 
about in the global environment (Zimmer, 2010). In reality, 
a number of microbes may be impacted by climate change, 
which might have an adverse effect on the environment, 
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the economy, and society as well (French et al., 2009). 
Micro-, nano-, and picoplankton, which include bacteria 
and archaea, dominate the mechanics of the oceanic 
carbon cycle (Stewart, 2003). Massive populations of 
photosynthetic microbes can be found in oceans, 
particularly in polar region (like Arctic Sea ice), and these 
organisms extract enormous amounts of atmospheric 
carbon. Ideally, the ocean's bacteria have captured around 
one-fourth of the anthropogenic CO2 produced since 1960 
(Weiman, 2015). Additionally, the ocean's water supports a 
huge number of viruses (around 41030), which have the 
potential to lyse up to 50% of oceanic bacteria per day. 
They significantly alter the way biological matter 
accumulates and respirates, a key driver of climate 
change, in this way, which has an impact on global 
geochemistry (Suttle, 2007).  

Methanotrophic bacteria reduce the impact of 
extremely high CH4 emission levels in some conditions 
(Singh et al., 2010). For instance, they consume massive 
amounts of CH4 produced by abrupt good blowouts like the 
Deepwater Horizon leak as well as by marine sediments 
(Zimmerman and Labonte, 2015). Natural CH4 emissions 
are mostly caused by anaerobic archaea that live in 
wetlands, oceans, rumens, and termite guts. 
Approximately these emissions would be around 250 
million tonnes, or 2.5 1011 kg/year (Singh et al., 2010). 
Compared to regions where there is an active water flow, 
saltier wetlands are home to microbial communities that 
release less methane (Dutta and Dutta, 2016).  

Additionally, the climate is influenced by and 
responded to marine biogeochemical processes. 
Population growth is causing the atmospheric CO2, the 
most prominent greenhouse gas, to rise significantly. The 
amount of atmospheric carbon that has increased since 
pre-industrial times (150 Gt C) is equal to how quickly the 
marine planktonic ecology cycles through carbon (Denman 
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et al., 1996). A density-driven mechanism will also cause 
the surface combined layer to become thinner over a large 
portion of the ocean, keeping microbial communities 
nearer the surface where solar radiation is strongest. The 
future ocean is predicted to lose a significant amount of 
oxygen due to a combination of reduced oxygen solubility 
(in warmer surface waters) and stratification-driven 
isolation from atmospheric ventilation (in deeper waters).  

The global spread of hypoxic waters will have 
significant effects on microbial diversity and metabolism 
(Hutchins and Fu, 2017). Changes to the planet in the 
future, especially climate change and decreased nutrition 
availability, may cause a shift in the phytoplankton 
population away from giant cells like diatoms and toward 
smaller species like picocyanobacteria, according to 
modeling studies (Dutkiewicz et al., 2015). There is 
compelling evidence that the biogeographic boundaries of 
marine bacteria and phytoplankton have begun rapidly 
shifting in response to climate change, much like those of 
plants and animals (Poloczanska et al., 2013).  

Physical ocean circulation patterns in currents or 
eddies limit microbial expansions into new habitats (Doblin 
and Van Sebille, 2016). Invasive microorganisms including 
poisonous algae can be introduced into new ecosystems 
by anthropogenic transport vectors like ship ballast water 
transfers (Doblin et al., 2004). Scientists can now evaluate 
the structure and function of microorganisms in a variety of 
habitats, including soil, sediment, water, and inside of 
animal and plant hosts, thanks to recent advances in 
molecular technologies. The responses of marine microbial 
communities to climate change offer an essential 
experimental framework for comprehending how future 
changes in human-induced pollution, microbiological 
relationships, and climate change may affect marine 
ecosystems. 
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4. Conclusion 

In addition to being the cause of climate change, 
microbes also react differently to it. They are sensitive to 
changes in the world, but it is unclear how they will react. 
This is due to the fact that microbes exist in a variety of 
communities and engage in intricate interactions with one 
another and their surroundings. Considering the stated 
uncertainties, it is clear that understanding the direct and 
indirect effects of climate change on these bacteria and 
their related long- and short-term responses will help to 
comprehend the possible roles of the microbes. If applied 
appropriately, microbes have the potential to be a vital 
natural resource for identifying climate change. We must 
conduct in-depth research on this subject, fully understand 
the underlying mechanics, and then apply what we 
determine to finding solutions. In order to increase 
awareness and involvement among the scientific 
community on the relationship between microbial 
interaction and climate change, special issues or research 
themes in particular journals might be created based on 
analysis of emerging trends and revolutionary shifts in the 
same sector. 
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