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Legumes; Meghalaya part of the Indo-Myanmar biodiversity hotspot, harbors diverse
Nodulation; native legumes, yet their association with nitrogen-fixing microsymbionts
Nitrogen fixation; remains poorly understood. Approximately, 100-200 legumes species
Bradyrhizobium; occur in North-East India, 60% of which are native. Species such as
Meghalaya Desmodium polycarpum and Smithia ciliata are ecologically and

medicinally important but their nodulation status is scarely studied.
Globally, Bradyrhizobium, a slow-growing genus first isolated from
Glycine max, is known for its metabolic versatility, including
chemolithotrophy and photosynthetic gene clusters. More than 36 species
have been reported from different agro-ecosystems across Asia and South
America, yet information from the state of Meghalaya, India is lacking.
This knowledge gap limits understanding of rhizobium-legume
interactions in a region with high ecological and evolutionary significance.
This study aims to elucidate the diversity and effectiveness of
microsymbionts associated with nodulation and nitrogen fixation,
highlighting their ecological significance.

1. Introduction

Meghalaya, with a total area of 22,429 km square is located between latitudes 25°00 and
26°10 north and 89°45 and 92°47 east. Its northern, eastern and western borders are shared with
Bangladesh and Assam, respectively (Reddy and Baiantimon, 2011). The area is distinguished by
a variety of agro-climatic and physical-circumstances and the region is a significant component of
the Indo-Myanmar biodiversity hotspot (Myers et al., 2000). There are about 100- 120 legume
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species documented from North-East India, out of which 60% are native to the area (Balakrishnan,
1981; Haridasan and Rao, 1987). The genus Desmodium polycarpum is one of the legumes that
belong to the subfamily Papillionoideae (Fabaceae) widely distributes in the tropical and
subtropical regions of the world (Tonuitti et al., 2017; Andrews et al., 2017) and the eastern
Himalayan region of India (Meghalaya). This plant is known to have medicinal properties for
treatment of dysentery, liver diseases, ulcers, eye diseases, etc (Gu et al., 2007). It is also found in
Columbia (Delamuta et al., 2012), Argentina (Tonuitti et al., 2017), China (Xu et al., 2016).
Smithia ciiata is an annual and diffused herb (Bargali et al., 2016) belonging to the subfamily
Papillionoideae (Fabaceae). It grows on the sloppy hills during rainy seasons, native to Himalayas,
tropical and subtropical Asia and is commonly known as fringed Smithia. In India, it is mainly
found in Assam, Meghalaya and Mizoram (Manandhar et al., 2009; Panday et al., 2016).

Reports on the nodulation status in crop legumes such as Glycine max (Appunu et al., 2008;
Appunu et al., 2009) and Vigna (Appunu et al., 2009) species by native Bradyrhizobium strains
have been recorded from agricultural fields of central and southern part of India where the soil is
mostly neutral to alkaline and also some parts of Maharashtra (Deshmukh et al., 2013).
Bradyrhizobium strain (Kanika et al., 2010) has been isolated from pigeon pea (Cajanus cajan)
growing under arid conditions in Rajasthan and North Western India plains, respectively.

This genus was first isolated from Glycine max and described by Jordan (1982) and it
include all the slow growing bacteria with a generation time of 10-12 hr. (Andrews et al., 2017)
described that the Bradyrhizobium species have been reported from China (Yao etal., 2014), Brazil
(Fonseca et al., 2012), India (Ojha et al., 2017, Rathi et al., 2018, Chouhan et al., 2024, Bissa et
al., 2024). Shamsheldin et al., (2017) reported that there are about more than 36 species that belong
to this genus. Bradyrhizobium strains are alkaline-producing group, slow growing bacteria, gram
negative, rod-shaped with a single polar or subpolar flagellum (Somasegaran and Hoben, 1985;
Sessitsch et al., 2002). Some of the Bradyrhizobium species could grow as chemolithotrophs in
the presence of hydrogen, carbon dioxide and low content of oxygen due to the presence of the
enzyme hydrogenase (Berrada et al., 2014). Interestingly, photosynthetic gene clusters have also
been studied in B. japonicum and B. elkanii based on comparative genomics by Avontuur et al.,
2023. The recently reported novel species B. ontarionense A19" from root nodules of
Aeschynomene indica has also been reported to cluster with the photosynthetic clade (Bromfield
and Cloutier, 2024).

The native legumes of Meghalaya have been neglected despite being a hub of a mega
biodiversity center, and there is very little knowledge regarding their likely link with
microsymbionts. Despite their spatial and evolutionary significance, such relationships between
rhizobium-legume in the North-East region have mostly been ignored and have never been
explored for in-depth investigation. Exploring the relationship between the diversity of
Meghalaya’s native legumes above ground and below ground microsymbionts will be intriguing.
Such research is anticipated to help in understanding the role of geographical factors influence
rhizobia selection and shed light on evolutionary relationships between the rhizobia gathered from
different ecological zones of Meghalaya. The present study can provide insight on the types of
microsymbionts associated with nodulation and nitrogen fixation and its diversity and
effectiveness contrasted with the process of nitrogen fixing.
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2. Material and methods
2.1. Study area and plant collection

D. polycarpum and S. ciliata were surveyed and collected from different areas of Meghalaya
(Mawryngkneng, Nongstoifi, lalong, Jowai, Ummulong, Umroi, Marngar, Umbang, Sohiong,
Mairang, Mawthadraishan, Lum Rapleng, Laitlyngkot), Fig 1. The plant specimens were identified
with aid of the Regional Centre of the Botanical Survey of India (BSI), Shillong and their accession
number were obtained as previously reported (Kharbyngar et al., 2025). The plants were collected
and excavated during the period between April-October.
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Fig 1. Map showing the location of the collection sites (QGIS 3.28.3 Firenze)
2.2. Isolation and purification of root nodulating bacteria

Fresh and healthy root nodules were separated from the legumes and further sterilized with
90% (w/v) ethanol for 1 minute followed by 0.1% (w/v) fungicide (Bavistin®) for 5 minutes and
0.1% (w/v) HgCl> for 3-6 minutes and further washed with autoclaved distilled water in intervals.
The sterilized nodules were then taken on to a sterilized watch glass and crushed using a sterile
scapel. The root exudates obtained were streaked on Congo red-Yeast Extract Mannitol Agar
medium (CR-YEMA) with pH 7 (Vincent 1970) and Somasegaran and Hoben (1994) with minor
modifications and incubated at 28°C in BOD incubator for 4-7 days. The rhizobial colonies were
obtained and purified through quadrant streaking and preserved on agar slants/stabs kept at low
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temperature (4°C) for short-term storage or in YEM broth containing 20% (w/v) glycerol at -80°C
for long term storage.

2.3. Genomic DNA isolation

The RNB isolates were cultured on tryptone yeast (TY) agar and broth media and the
activated cultures were used for DNA isolation (Howieson and Dilworth, 2016). DNA extraction
of the bacterial culture was done by using Phenol Chloroform method described by Cheng and
Jiang (2006) with minor modifications. In this method 1ml sterile saline solution was added to a
sterile 1.5 ml tube and a loop full of activated culture. The tube was centrifuged at 8,000 rpm for
2 min at room temperature. Supernatant was discarded and pellet was washed with 400 pL of STE
(Sodium Chloride Tris-EDTA). Subsequently, the phenol-chloroform was added for DNA
purification. The purified DNA obtained was further used as a template for DNA fingerprinting
and amplification of various housekeeping genes and symbiotic genes.

2.4. DNA fingerprinting

The genetic diversity of all the strains was analyzed and grouping was done based on DNA
fingerprinting through RAPD (Random Amplified Polymorphic DNA) A single nif gene-directed
RPO1 primer described earlier by Richardson et al., 1995 was used for the random amplification.
A total volume of 20 pL reaction mixture containing 1 uL of DNA template, 2 uL of 10x Taq
buffer, 3 pL of 25 mM MgClz, 1.2 pL of ANTP mix (2.5 mM each), 1 pL of DMSO, 1.2 pL of
50 uM RPO1 primer, 0.35 pL of 3 UuL"! Tag DNA polymerase and nuclease free water and
were set up with cycling conditions as follows: 5 min 94°C, 5 x (30 s 94°C, 1 min 55°C, 1.5 min
72°C), 30 x (30 s 94°C, 25 s 58°C, 30 s 72°C), followed by final extension of 7 min at 72°C
thermal cycler (ESCO Swift Max Pro).

2.5. PCR amplification of 16S rRNA gene

PCR amplification of 16S rRNA gene was performed using universal primers 18F and
1492R (Weisburg et al., 1991). PCR reaction was carried at a total volume of 25 pL reaction
mixture containing 1.25 puL of diluted DNA template, 2.5 pL of 10x Taq buffer, 2 pL of 25 mM
MgCl12, 1.5 pL of ANTP mix (2.5 mM each), 1.25 pL of DMSO, 0.6 pL of forward (18F) and
reverse primers (1492R), 0.25 uL of 3 UuL"! Taq DNA polymerase and nuclease free water. The
PCR cycle conditions were set up as follows: 5 min 95°C, 5 x (1 min 94°C, 1 min 53°C, 1 min
72°C) followed by final extension of 7 min at 72°C thermal cycler (ESCO Swift Max Pro).

2.6. PCR amplification of housekeeping genes

For multilocus sequence analysis (MLSA), three conserved protein-coding housekeeping
genes (recA, ginll and atpD) were amplified and sequenced. The primers primer pair TSrecAF and
TSrecAR as described by Stepkowski et al., 2005 was used for amplification of 600 bp rec4 gene
(which codes for recombination protein) in Bradyrhizobium. The amplification of 620 bp glnll
gene (glutamine synthase II) in Bradyrhizobium was carried out using the primer pair TSgInlIF
and TSgInlIR as described by Stepkowski et al., 2005. The amplification of 500 bp atpD gene
(which codes for ATP synthase F1 beta subunit) in Bradyrhizobium was carried out using the
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primer pair atpD294F and atpD771R as described by Gaunt et al., (2001). The PCR reaction
mixture for amplification of protein-coding housekeeping genes was similar to that used in 16S
rRNA gene with minor modifications.

2.7. PCR amplification of symbiotic genes

Two symbiotic genes (nodA and nifH) were amplified and sequenced for the selected
strains. To amplify an internal fragment of 550 bp nodA gene (which codes for N-acyltransferase
nodulation protein) in Bradyrhizobial strains, the primer pair nodAf.brad and nodAr.brad were
effectively used as described by Chaintreuil et al., (2001). PCR reaction was carried at a total
volume of 25uL reaction mixture containing 1.25 uL of the DNA template, 2.5 pL 10x Taq buffer,
volume of 25 mM MgClz depending on the type of gene fragment amplified, 1.5 pL of ANTPs mix
(2.5 mM each), 1.25 pL of dimethyl sulfoxide (DMSO), 0.5 uL of forward and reverse primers,
0.25 puL of 3 UpL! Taq DNA polymerase and nuclease free water. The amplification of 750bp
nifH gene (which codes for nitrogenase Fe protein) in Rhizobium strains was carried out using
primer pair nifHF and nifHI as described by Laguerre et al., (2001). PCR optimization was
performed at a total volume of 25uL reaction mixture, containing 1.25 uL of the DNA template,
2.5 pL 10x Taq buffer, volume of 25 mM MgCl2 depending on the type of gene fragment
amplified, 1.5 pL of ANTPs mix (2.5 mM each), 1.25 pL of dimethyl sulfoxide (DMSO), 0.5 uL
of forward and reverse primers, 0.25 uL of 3 UpL"! Taqg DNA polymerase and nuclease free water.

2.8. Sequence and phylogenetic analysis

The PCR products for the symbiotic and housekeeping genes were sequenced using the
respective primers and the sequencing was carried through an outsource from Biokart India Pvt.
Ltd., Bangalore, India. The sequences acquired were analyzed using bioinformatic tools such a
GeneTool lite (version 1.0 Double Twist Inc., Oakland, CA, USA) and deposited in the GenBank
database to obtain accession numbers for different genes. To conduct molecular phylogenetic
analysis, the multiple sequence alignment tool CLUSTALW was used to align the reference
sequences needed for comparison that were retrieved from the NCBI. The Kimura 2-parameter
model was used to calculate the pair wise evolutionary distances (Kimura, 1980) and using the
neighbour-joining method, the phylogenetic trees were inferred (Saitou and Nei, 1987). Using
MEGA 7 software, the phylogenetic trees were constructed, their distance was calculated and the
evolutionary analysis was performed with bootstrapped value of 1000 replications (Kumar et al.,
2016).

3. Results
3.1. Isolation and purification of root nodulating bacteria

During the field survey of leguminous plants that were investigated, it was observed that
the mandate plants such as Desmodium polycarpum and Smithia ciliata were found mostly in
patches during rainy season of the year, from the month of May - October. These wild and native
legumes of Meghalaya have not been thoroughly explored for its nodulation and its endosymbiotic
bacteria. The legume plant, S. ciliata was explored for the first time for its nodulation and its
microsymbionts associated with them. The nodulation was seen optimum at the height of 3-10 cm
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of top soil where the legumes grow and significant nodulation was observed in all the four plants
and the nodules were well distributed. The nodules of S. ciliata were found to be of determinate
aeschynomenoid type, without lenticels and were always associated with the lateral and
adventitious roots. The surface of the nodules of S. ciliata was pink in colour which indicates the
presence of leghaemoglobin. Similarly, the nodules of D. polycarpum were pink in colour but they
had lenticels and were of desmodioid type as previously described (Kharbyngar et. al, 2025). A
total of 54 rhizobial strains were isolated and purified from the root nodules of these two native
legumes and these strains were further carried out for molecular characterization.

3.2. DNA fingerprinting through RAPD (Random Amplified Polymorphic DNA)

A total of twenty-six strains isolated from D. polycarpum were grouped into five groups
(Group 1 to group 5) and fifteen individual genotypes. Highest number of strains were found in
group 1 with three strains, NEHU-DP1, NEHU-DP2, both were isolated from Mawryngkneng and
NEHU-DP3 from NEHU whereas group 2, 3, 4 and 5, each consist of two strains. Group 2 include
the strains NEHU-DP9 and NEHU 11 isolated from Nongstoifi and lalong, and NEHU- DP 12 from
Jowai and NEHU15 from Ummulong, respectively, constituted group 3. Group 4 consists of
NEHU-DP14 and NEHU-DP16 isolated from Khliechumstem and Umbang respectively, and the
strains NEHU-DP21 from Marngar and NEHU-DP26 from Umroi formed the group 5 (Table 1).

Table 1. Grouping of NEHU-DP microsymbionts based on RPO1 primer

SL No Groups Isolate Morphology Site District
1 Group 1 NEHU-DP1 Circular, raised, entire, high EPS, fast growing Mawryngkneng East Khasi Hills
NEHU-DP 2 Circular, convex, entire, high EPS, fast growing Mawryngkneng
NEHU-DP 3 Circular, raised, entire, high EPS, slow growing NEHU
2 Group 2 NEHU-DP 9 Circular, convex, entire, high EPS, fast growing Nongstoifl West Khasi Hills
NEHU-DP 11 Circular, raised, entire, high EPS, fast growing lalong Jaintia Hills
3 Group 3 NEHU-DP 12 Circular, raised, entire, high EPS, slow growing Jowai Jaifitia Hills
NEHU-DP 15 Circular, raised, entire, high EPS, slow growing Ummulong
4 Group 4 NEHU-DP 14 Circular, raised, entire, high EPS, fast growing Khliehriat Jaintia Hills
NEHU-DP 16 Circular, convex, entire, high EPS, fast growing Marngar Ri-Bhoi
5 Group 5 NEHU-DP 21 Circular, raised, entire, high EPS, fast growing Umroi Ri-Bhoi
NEHU-DP 26 Circular, raised, entire, high EPS, fast growing Umroi
6 Group 6 NEHU-DP 4 Circular, convex, entire, high EPS, fast growing NEHU East Khasi Hills
7 Group 7 NEHU-DP 5 Circular, raised, entire, low EPS, fast growing Sohiong
8 Group 8 NEHU-DP 6 Circular, convex, entire, high EPS, fast growing Kynshi West Khasi Hills
9 Group 9 NEHU-DP 7 Circular, raised, entire, high EPS, slow growing Kynshi
10 Group 10 NEHU-DP 8 Circular, convex, entire, high EPS, slow growing Mawthadraishan
11 Group 11 NEHU-DP 10 Circular, raised, entire, high EPS, fast growing Nongstoifl
12 Group 12 NEHU-DP 13 Circular, convex, entire, high EPS, fast growing Khliehriat Jaintia Hills
13 Group 13 NEHU-DP 17 Circular, raised, entire, low EPS, fast growing Umbang Ri-Bhoi
14 Group 14 NEHU-DP 18 Irregular, raised, entire, low EPS, fast growing Quinine
15 Group 15 NEHU-DP 19 Circular, raised, entire, high EPS, slow growing Nongpoh
16 Group 16 NEHU-DP 20 Circular, convex, entire, high EPS, fast growing Nongpoh
17 Group 17 NEHU-DP 22 Circular, raised, entire, high EPS, slow growing Marngar
18 Group 18 NEHU-DP 23 Circular, raised, entire, high EPS, slow growing Umling
19 Group 19 NEHU-DP 24 Circular, raised, entire, high EPS, slow growing Khanapara
20 Group 20 NEHU-DP 25 Circular, raised, entire, high EPS, slow growing Khanapara
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A total of twenty-eight strains were isolated from S. ciliata and its RAPD profile revealed
four groups (Group 1- group 4) and nineteen individual genotypes. The highest number of strains
was observed in group 2 which includes NEHU-SC8, NEHU-SC11 and NEHU-SC12 isolated
from Sohiong, Mairang and Mawthadraishan respectively whereas group 1, 3 and 4 consist of two
strains each. Group 1 comprised of the strain NEHU-SC 2 from Lum Rapleng and NEHU-SC3
from Laitlyngkot and group 3 included the strain NEHU-SC17 and NEHU-SC22 isolated from
Nongstoinl and Umbang, respectively. And lastly, group 4 included the strain NEHU-SC 24 and

NEHU-27 isolated from Umling and Khanapara, individually (Table 2).

Table 2. Grouping of NEHU-SC microsymbionts based on RPO1 primer.

SL Groups Isolates Morphology Site District
No.
1 Group 1 NEHU- SC 2 Circular, convex, entire, high EPS, fast growing Laitlyngkot East Khasi Hills
NEHU- SC 3 Circular, convex, entire, high EPS, fast growing Laitlyngkot
2 Group 2 NEHU- SC 8 Circular, raised, entire, high EPS, slow growing Sohiong East Khasi Hills
NEHU- SC 11 Circular, raised, entire, high EPS, fast growing Mairang West Khasi Hills
NEHU- SC 12 Circular, raised, entire, high EPS, slow growing Mawthadraishan
3 Group 3 NEHU- SC 17 | Circular, convex, entire high EPS, fast growing Nongstoifl West Khasi Hills
NEHU- SC 22 | Circular, raised, entire high EPS, fast growing Umbang Ri-Bhoi
4 Group 4 NEHU- SC 24 | Circular, convex, entire, high EPS, fast growing Umling Ri-Bhoi
NEHU- SC 27 Circular, convex, entire, high EPS, fast growing Khanapara
5 Group 5 NEHU-SC 1 Circular, raised, entire, high EPS, fast growing Lum Rapleng East Khasi Hills
6 Group 6 NEHU- SC 4 Circular, convex, entire high EPS, fast growing Mawkynrew
7 Group 7 NEHU- SC 5 Circular, convex, entire high EPS, fast growing Mylliem
8 Group 8 NEHU- SC 6 Circular, raised, entire, high EPS, slow growing NEHU
9 Group 9 NEHU-SC 7 Circular, convex, entire high EPS, fast growing NEHU
10 Group 10 | NEHU-SC 9 Circular, convex, entire high EPS, fast growing Umphrup
11 Group 11 | NEHU- SC10 Circular, convex, entire high EPS, slow growing Mairang West Khasi Hills
12 Group 12 | NEHU-SC 13 | Circular, convex, entire high EPS, slow growing Mawthadraishan
13 Group 13 | NEHU-SC 14 | Circular, convex, entire high EPS, fast growing Markasa
14 Group 14 | NEHU-SC-15 | Circular, convex, entire high EPS, slow growing Nongstoifl
15 Group 15 | NEHU-SC 16 Circular, convex, entire high EPS, slow growing Nongstoifl West Khasi Hills
16 Group 16 | NEHU-SC 18 Circular, raised, entire, high EPS, fast growing Ummulong Jaifitia Hills
17 Group 17 | NEHU-SC 19 Circular, convex, entire high EPS, slow growing Jowai
18 Group 18 | NEHU-SC 20 Circular, raised, entire, high EPS, slow growing Khliehriat
19 Group 19 | NEHU-SC 21 Circular, raised, entire, high EPS, slow growing Khliehriat
20 Group 20 | NEHU-SC 23 Circular, raised, entire, high EPS, slow growing Umling Ri-Bhoi
21 Group 21 | NEHU-SC 25 Circular, raised, entire, high EPS, fast growing Umling
22 Group 22 | NEHU-SC 26 Circular, raised, entire, less EPS, fast growing Khanapara
23 Group 23 | NEHU-SC 28 Circular, raised, entire, high EPS, slow growing Umroi

3.3. Phylogenetic analysis of the Bradyrhizobium strains on the basis of 16S rRNA gene
phylogeny

Despite the fact that the protein-coding gene is necessary to fully resolve the phylogenetic
status of the strains, 16S rRNA is still regarded as a prerequisite for the identification and
molecular study of the strains, due to its highly conserved sequence. The strains that were selected
for MLSA studies were also considered for their 16S rRNA gene sequencing phylogenetic analysis
(Fig 2). The strains NEHU-SC23 isolated from Umling, NEHU-SC28 isolated from Umroi of Ri-
Bhoi and NEHU-SCI16 isolated from Nongstoifi (West Khasi Hills), formed a group that clustered
close to B. stylosanthis BR446T (KU724142). The strain NEHU-SC15 isolated from Nongstoifi

45



Kharbyngar et al., 2025 / Environ. We Int. J. Sci. Tech. 20, 39-64

(West Khasi Hills) formed a lineage divergent from B. jicamae PAC68T (NR043036). The strains
NEHU-DP7 isolated from Kynshi and NEHU-SC13 isolated from Mawthadraishan both of West
Khasi Hills, each formed a novel lineage divergent from B. rifense CTAW7IT(NR116361).

3.4. Phylogenetic analysis of Bradyrhizobium strains on the basis of protein-coding
housekeeping gene

To improve the resolution of the 16S rRNA-based phylogeny, a multi locus sequence
analysis (MLSA), using three conserved protein-coding housekeeping genes (recA, ginll and
atpD) was performed on sixteen selected Bradyrhizobium strains.

3.5. Phylogenetic analysis of the Bradyrhizobium strains on the basis of recA gene phylogeny

On the basis of recA, majority of the clusters were formed by the strains from West Khasi
Hills and Ri-Bhoi areas. The clustering of strains was connected to their geographical origin as
seen in C2 (T-III), where all the strains (NEHU-DP22, NEHU-DP19 and NEHU-DP24) were
isolated from Marngar, Nongpoh and Khanapra of Ri-Bhoi areas. However, significant diversity
was also found where the microsymbionts from tropical wet regions and with low elevation of Ri-
Bhoi areas and high elevations of East and West Khasi Hills formed a diverse clade and lineages.
The cluster C1 formed by the strains (NEHU-DP7 and NEHU-DP23) isolated from Kynshi/West
Khasi Hills and Umling/Ri-Bhoi district and C3 (NEHU-DP8 & NEHU- SC12) both were isolated
from Mawthadraishan/West Khasi Hills, NEHU-SCS isolated from Sohiong/East Khasi Hills, and
NEHU-SC23 isolated from Umling/Ri-Bhoi district which is of different climatic conditions and
thereby suggesting their differentiation in its origin. The single novel lineage L1 (NEHU-SC13)
isolated from Mawthadraishan, C1 and C2 shows divergence from B. sacchari BR10280T
(KX065095). Details are illustrated in Fig 3.

3.6. Phylogenetic analysis of the Bradyrhizobium strains on the basis of atpD gene phylogeny

The strains selected for the MLSA studies were also subjected for sequencing of the gene
atpD encoding for ATP synthase F1 beta subunit and the Maximum Likelihood phylogenetic tree
were also constructed (Fig 4). The two strains NEHU-DP7 and NEHU-SC13 that were isolated
from Kynshi and Mawthadraishan respectively (West Khasi Hills), formed a clade divergent from
B. ganzhouense RITF806T (JX277182). The strains NEHU-SC28 isolated from Umroi (Ri-Bhoi)
and NEHU-SC15 isolated from Nongstoin (West Khasi Hills), each formed separate lineages
divergent from B. iriomotense EKOST (AB300994). The strains NEHU-SC20 and NEHU-SC21
both were isolated from Khliehriat (Jaifitia Hills), clustered together diverging from B. embrapense
SEMIA 6208T (HQ634875). And the strains NEHU-DPS8 isolated from Mawthadraishan,
NEHU-SC16 isolated from Nongstoifi, NEHU-SCI12 isolated from Mawthadraishan from West
Khasi Hills and NEHU-SC23 isolated from Umling (Ri-Bhoi), clustered together to form a clade
divergent from B. elkani USDA 76T (AY386758).

3.7. Phylogenetic analysis of the Bradyrhizobium strains on the basis of gIlnll gene phylogeny

In case of the gene ginll, the strains NEHU-DP7 and NEHU-SC13 that were isolated from
Kynshi and Mawthadraishan respectively (West Khasi Hills), formed a clade divergent from B.

46



Kharbyngar et al., 2025 / Environ. We Int. J. Sci. Tech. 20, 39-64

ganzhouense RITF806T (JX277110). Similarly, strains NEHU-SC28 isolated from Umroi (Ri-
Bhoi) and NEHU-SC15 isolated from Nongstoifi (West Khasi Hills) form a clade divergent from
B. iriomotense EKO5T (AB300995). NEHU-SC12 isolated from Mawthadraishan (West Khasi
Hills) and NEHU-SC23 isolated from Umling (Ri-Bhoi), clustered together to form a clade
divergent from B. mercantei SEMA6399T (KX690621) and similarly, the strain NEHU-DP8
isolated from Mawthadraishan and NEHU-SC16 isolated from Nongstoifi (West Khasi Hills) form
a separate lineage divergent from B. mercantei SEMA6399T (KX690621). And NEHU- SC20 and
NEHU-SC21 isolated from Khliehriat (Jaifitia Hills) each formed a lineage divergent from B.
pachyrhizi PAC48T (FJ428201). Details are illustrated in Fig 5.

3.8. Phylogenetic analysis of the Bradyrhizobium strains on the basis of concatenated gene
(rrs- ginll-atpD-recA) phylogeny

On the basis of rrs-ginll-atpD-recA genes, a concatenated gene phylogeny was constructed
(Fig 6) and percentage similarity with the type strains was calculated (Table 3).

Table 3. Percentage sequence similarity of Bradyrhizobium strains isolated from D. polycarpum and S. ciliata based
on concatenated gene (7rs- recA ginll-atpD) phylogeny.

Type Strains NEHU-DP7 | NEHU-SC13 NEHU-SC16 | NEHU-SC23 | NEHU-SC28
B. americanum CMVU44T (KC247141) 93.37 93.29 89.89 89.99 92.31
B. arachidis CCBAU 051107T (HM107233) 94.63 94.12 91.22 91.39 94.02
B. betae PLTHGIT (FJ970378) 94.53 94.18 89.99 90.07 94.98
B. canariense BTA-1T (AY591553) 93.73 93.55 89.90 89.90 94.71
B. centrosemae A9T (KC247145) 93.30 92.87 90.76 91.29 92.31
B. cytisi CTAWI11T (GU001575) 93.57 93.40 89.72 89.63 93.93
B. dagingense CCBAU 15774T (HQ231270) 92.85 92.76 89.41 89.21 91.59
B. denitrificans LMG 8443T (EU665419) 88.07 87.60 88.26 88.35 88.37
B. elkanii USDA76T (AY591568) 89.93 89.39 94.74 94.65 91.07
B. embrapense CNPSo 2833T (HQ634899) 89.81 89.54 94.64 95.59 90.94
B. ganzhouense RITF806T (JX277144) 95.14 94.80 89.98 89.71 93.99
B. guangdongense CCBAU 51649T (KC509269) 93.76 93.41 90.00 89.44 92.02
B. guangxiense CCBAU 53363 T (KC509279) 93.75 93.31 90.03 90.55 92.67
B. huanghuaihaiense CCBAU 23303T (HQ231595) 94.98 94.64 89.92 89.91 93.49
B. icense LMTR 13T (JX943615) 88.82 88.45 90.86 90.78 89.42
B. iriomotense EKO5T (AB300996) 93.41 93.06 89.09 88.51 93.14
B. japonicum USDA 6T (AM168341) 93.41 93.24 89.58 90.40 96.29
B. jicamae LMG 24556T (HQ587415) 89.11 89.02 90.51 90.97 89.43
B. lablabi CCBAU 23086T (GU433522) 89.26 89.08 92.53 92.35 89.78
B. liaoningense LMG 18230T (FM253180) 94.63 94.46 90.38 90.19 93.67
B. lupini USDA 3051T (KM114866) 93.91 93.57 90.20 90.02 94.38
B. namibiense 5-10T (KM378377) 89.12 89.02 89.36 89.93 88.35
B. oligotrophicum LMG 10732T (JQ619231) 86.78 86.40 87.51 88.16 87.61
B. ottawaense 0099T (HQ587287) 93.47 93.30 90.49 90.67 93.41
B. pachyrhizi PAC48T (HM590777) 89.91 89.37 94.90 95.16 90.03
B. paxllaeri LMTR 21T (JX943617) 88.17 87.98 90.13 90.59 88.87
B. retamae Rol19T (KC247094) 87.98 87.61 89.96 90.14 89.05
B. rifense CTAWT1T (GU001585) 95.23 94.89 89.71 89.91 93.21
B. sacchari BR10280T (KX065095) 93.66 93.31 90.30 90.29 92.22
B. tropiciagri CNPSo 1112T (FJ391168) 90.38 90.02 94.91 94.74 91.48
B. valentinum LmjM3T (JX518589) 88.26 87.79 89.36 89.07 88.36
B. yuanmingense CCBAU 10071T (AM168343) 93.22 93.05 91.78 91.78 93.32

The strains NEHU- DP7 and NEHU-SC13 isolated from Kynshi and Mawthadraishan respectively
(West Khasi Hills), clustered together to form a clade divergent from B. ganzhouense RITF806T
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(JX277144). Similarly, strains NEHU-SC16 and NEHU-SC23 isolated from Nongstoifi (West
Khasi Hills) and Umling (Ri-Bhoi) respectively, clustered together to form a clade divergent from
B. pachyrhizi PAC48T (HM590777). And the strain NEHU-SC28 isolated from Umroi (Ri-Bhoi)
form a lineage divergent from B. japonicum USDA 6T (AM168341).

3.9. Phylogenetic analysis of the Bradyrhizobium strains on the basis of concatenated gene
(gInlI- atpD-recA) phylogeny

The concatenated dendogram, which combines the sequences of protein-coding
housekeeping genes, excluding the conserved 16S rRNA gene, was also generated, and a finer
resolution of the phylogenetic position of the strains was inferred as a result (Fig 7) and percentage
similarity with the type strains was calculated (Table 4). The strains NEHU-DP7 and NEHU-SC13
isolated from Kynshi and Mawthadraishan respectively (West Khasi Hills), clustered together to
form a clade divergent B. ganzhouense RITF806T (JX277144). Similarly, the strains NEHU-
SC12, NEHU-SC23 and NEHU-SC16 isolated from Mawthadraishan (West Khasi Hills), Umling
(Ri-Bhoi), and Nongstoifi (West Khasi Hills) clustered together to form a clade divergent B.
pachyrhizi PAC48T (HM590777) and NEHU-SC20 and NEHU-SC21 isolated from Khliehriat
(Jaintia Hills) clustered together to form a clade divergent from B. embrapense CNPSo 2833T
(HQ634899). The strain NEHU-SC28 isolated from Umroi (Ri-Bhoi) form a lineage divergent
from B. iriomotense EKO5T (AB300996).

3.9. Phylogenetic analysis of RNB strains on the basis of symbiotic genes

3.9.1. Phylogenetic analysis of the Bradyrhizobium strains on the basis of nodA gene
phylogeny

On the basis of nodA gene phylogeny, eleven Bradyrhizobium strains separated to form
seven nodA types (TI-TVII) with 4 novel lineages and 3 clades (Fig 8). The clade C1(T-I) that
comprises of the strains NEHU-SC12, NEHU-SC23 and NEHU-DP8 isolated from
Mawthadraishan (West Khasi Hills), Umling (Ri-Bhoi) and Mawthadraishan (West Khasi Hills)
respectively, formed a cluster divergent from B. elkanii USDA 76T (AM117554) isolated from G.
max, USA. The strains NEHU-SC20 and NEHU-SC21 isolated from Khliehriat (Jaifitia Hills)
clustered together and formed a clade C2(T-III) divergent from B. pachyrhizi LMG 24246T
(KC509198) isolated from Pachyrhizus erosus, Costa Rica. And the last clade C3(T-VI) that
includes the strains NEHU-SC6 and NEHU-SC15 isolated from NEHU (East Khasi Hills) and
Nongstoinl (West Khasi Hills) formed a clade divergent from B. japonicum USDA 6T (AM117545)
isolated from G. max, USA. The lineage L1(T-II) includes the strain NEHU-SC16 isolated from
Nongstoin (West Khasi Hills) divergent from B. elkanii USDA 76T (AM117554) isolated from
G. max, USA. The strain NEHU-SC28 isolated from Umroi (Ri-Bhoi), formed a single lineage
L2 (T-IV) divergent from B. arachidis CCBAU 051107T (KC509196) isolated from Arachis
hypogaea, China. The strain NEHU-SC13 isolated from Mawthadraishan and the strain NEHU-
DP7 isolated from Kynshi of West Khasi Hills, each formed a separate single lineage L3(T-V) and
L4(T-VII) respectively, divergent from B. japonicum USDA 6T (AM117545) isolated from
Glycine max, USA.
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3.9.2. Phylogenetic analysis of the Bradyrhizobium strains on the basis of nifH gene

phylogeny

The clade CI1(T-I) that comprises of the strains NEHU-SC12, NEHU-SC23 and NEHU-
DPS isolated from Mawthadraishan (West Khasi Hills), Umling (Ri-Bhoi) and Mawthadraishan
(West Khasi Hills) respectively, formed a cluster divergent from B. elkanii USDA 76T
(AB094963) isolated from Japan.

Table 4. Percentage sequence similarity of Bradyrhizobium strains isolated from D. polycarpum and S. ciliata based
on concatenated gene (recA-ginll-atpD) phylogeny.

(AM168343)

NEHU- | NEHU-SCI NEHU- | NEHU- | NEHU- | NEHU- |NEHU- | NEHU-
DP7 sC13 SC16 SC20 sC21 sC23 SC28

B. americanum CMVUA44T 93.37 89.90 93.29 89.90 89.34 89.45 89.99 9231

(KC247141)

B. arachidis CCBAU 051107T 94.63 91.30 94.12 91.23 90.73 90.73 91.40 94.02

(HM107233)

B. betae PLTHGIT (FJ970378) 94.53 89.98 94.18 90.00 89.48 89.13 90.08 94.98

B. canariense BTA-1T (AY591553) | 93.73 89.81 93.55 89.90 90.17 90.08 89.91 94.71

B. centrosemae A9T (KC247145) 93.30 91.30 92.86 90.76 90.62 90.54 91.30 92.31

B. cytisi CTAWIIT (GU001575) 93.57 89.54 93.40 89.73 89.68 89.96 89.64 93.93

B. dagingense CCBAU 15774T 92.85 89.12 92.76 89.42 89.33 89.24 89.22 91.59

(HQ231270)

B. denitrificans LMG 8443T 88.07 88.17 87.61 88.27 88.04 87.67 88.36 88.38

(EU665419)

B. elkanii USDAT6T (AY591568) 89.93 94.47 89.39 94.74 95.16 95.09 94.65 91.07

B. embrapense CNPSo 2833T 89.73 95.33 89.46 94.56 96.62 96.96 95.51 90.85

(HQ634899)

B. ganzhouense RITF806T 95.14 89.71 94.80 89.98 88.89 89.10 89.72 93.99

(JX277144)

B. guangdongense CCBAU 51649T | 93.75 89.44 93.41 90.01 89.22 89.42 89.44 92.03

(KC509269)

B. guangxiense CCBAU 53363T 93.75 90.65 9331 90.03 89.99 89.72 90.56 92.67

(KC509279)

B. huanghuaihaiense CCBAU 94.98 89.82 94.63 89.93 89.02 89.61 89.92 93.49

23303T (HQ231595)

B. icense LMTR 13T (JX943615) 38.83 90.51 88.46 90.87 91.05 90.95 90.78 89.43

B. iriomotense EKO5T (AB300996) 93.50 88.51 93.15 89.19 88.27 88.39 88.61 93.23

B. japonicum USDA 6T 93.41 90.31 93.23 89.58 89.34 89.45 90.40 96.28

(AM168341)

B. jicamae LMG 24556T 89.21 90.78 89.11 90.60 90.38 91.02 91.06 89.53

(HQ587415)

B. lablabi CCBAU 23086T 89.36 92.17 89.17 92.61 91.96 91.78 92.44 89.87

(GU433522)

B. liaoningense LMG 18230T 94.63 90.01 94.46 90.39 91.00 90.54 90.20 93.67

(FM253180)

B. lupini USDA 3051T (KM114866) | 9391 89.93 93.57 90.20 90.19 90.11 90.02 94.38

B. namibiense 5-10T (KM378377) 89.22 89.83 89.12 89.45 90.09 90.36 90.02 88.44

B. oligotrophicum LMG 10732T 86.79 87.98 86.41 87.52 88.46 88.07 88.17 87.62

(JQ619231)

B. ottawaense 0099T (HQ587287) 93.47 90.58 93.30 90.49 89.73 89.84 90.67 93.41

B. pachyrhizi PAC48T (HM590777) | 90.00 95.07 89.46 94.99 96.18 96.53 95.25 90.13

B. paxllaeri LMTR 21T (JX943617) | 88.27 90.41 88.08 90.22 90.85 90.84 90.63 88.97

B. retamae Ro19T (KC247094) 87.99 89.86 87.62 89.96 90.32 90.67 90.14 89.06

B. rifense CTAWTIT (GU001585) 95.23 89.81 94.89 89.71 89.84 89.85 89.91 93.21

B. sacchari BR10280T (KX065095) | 93.66 90.20 93.31 90.31 89.43 89.26 90.30 92.22

B. tropiciagri CNPSo 1112T 90.38 94.56 90.02 94.91 9541 96.02 94.74 91.49

(FJ391168)

B. valentinum LmjM3T 88.27 89.07 87.80 89.37 89.22 89.25 89.07 88.37

(IX518589)

B. yuanmingense CCBAU 10071T 93.22 91.88 93.05 91.78 90.20 90.65 91.78 9332
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Table 5. Percentage sequence similarity of Bradyrhizobium strains isolated from D. polycarpum and S.ciliata based
on concatenated gene (nod-nifH) phylogeny.

Type strains

s |2 |8 |8 |2 |2 |8|/” |8 |8
& |8 |2 |§ |8 [ |9 |9 |& |9
4 4 4 z 4 4 z 4 4 4
B. arachidis CCBAU 051107T (KC509196) 80.66 |82.22 [80.03 |82.22 |79.52 (81.79 [84.29 | 84.29 | 82.22 | 85.82
B. brasilense UFLA 03-321T (MPVQ01000056) [77.92 (82.46 [77.27 |82.46 |77.81 |82.64 |85.78 | 85.78 | 82.46 | 81.67
B. canariense Oc6T (FR720454) 68.56 |(73.22 |67.28 |73.22 |66.20 |74.14 |70.51 | 70.51 | 73.22 | 69.10
B. centrolobii BR 10245T (LUUB01000057) 66.35 |70.65 |66.09 |70.65 |65.06 [70.44 [67.21 | 67.21 | 70.65 | 67.26
B. cytisi LMG 25866 T (KC509202) 70.84 |75.56 |70.06 |75.56 |68.47 |76.01 |72.81 | 72.81 | 75.56 | 69.94
B. dagingense CCBAU 15774T (KC509194) 96.81 |82.59 |[97.83 |82.59 |96.12 |[81.60 |[81.27 | 81.27 | 82.59 | 82.29
B. elkanii USDA 76T (AM117554) 80.71 |96.13 | 80.71 {96.13 |80.25 [95.96 [88.04 | 88.04 | 96.13 | 83.05
B. embrapense SEMIA 6208T (LFIP02000007) [79.07 |82.48 |78.43 |82.48 | 78.10 (82.66 (85.22 | 85.22 | 82.48 | 83.17
B. forestalis INPAS4BT (PGVG01000037) 85.78 |87.30 | 85.78 |87.30 |84.52 (86.71 [88.63 | 88.63 | 87.30 | 91.04

B. guangdongense CCBAU 51649T (KC509176) (62.49 (63.05 | 62.50 [63.05 | 61.88 ]63.59 |61.27 | 61.27 | 63.05 | 60.13
B. guangxiense CCBAU 53363T (KC509186) 66.24 (67.46 |65.68 |67.46 | 65.09 |67.73 |65.48 | 65.48 | 67.46 | 63.96

B. huanghuaihaiense CCBAU 23303T 06.81 8259 |97.83 [8259 |96.12 |81.60 B1.27 | 8127 |82.59 |82.29
(KC509197)

B. icense LMTR 13T (NZ CP016428) 7427 |76.56 |73.59 | 76.56 | 72.49 |76.80 |76.31 | 76.31 | 76.56 | 73.91
B. iriomotense EKO5T (AB300999) 65.63 |69.17 |65.07 | 69.17 | 6523 |69.88 |66.29 | 66.29 | 69.17 | 64.54
B. japonicum USDA 6T (AM117545) 06.81 |82.59 |97.83 |82.59 |96.12 [81.60 |81.27 | 81.27 | 82.59 | 82.29
B. jicamae LMG 24556T (KC509199) 73.98 |78.06 |73.30 | 78.06 | 71.73 |77.40 [77.99 | 77.99 | 78.06 | 74.62
B. lablabi CCBAU 23086T (JX518553) 72.08 |7627 |7138 |7627 |71.17 |76.95 [76.50 | 76.50 | 76.27 | 73.86
B. manausense BR 3351T (NZ LIYG01000088) [68.62 |71.27 |68.09 | 7127 | 6825 |71.97 [69.73 | 69.73 | 7127 | 67.43
B. pachyrhizi LMG 24246T (KC509198) S1.74 |92.39 [81.74 | 9239 |80.88 [92.21 [89.17 | 89.17 | 9239 | 84.21
B. paxllaeri LMTR 21T (NZ MAXBO01000110)  [73.05 |76.98 |72.36 [16.98 |71.71 |77.65 |7634 | 76.34 | 76.98 | 73.25
B. retamae Ro19T (KF806459) 7359 |76.53 |72.85 | 76.53 |71.53 |76.77 |7655 | 76.55 | 76.53 | 73.93
B. rifense CTAW71T (LM994610) 7055 |73.81 |69.30 | 73.81 | 67.69 7427 |71.12 | 71.12 | 73.81 | 68.46
B. sacchari BR10280T (LWIG01000060) 88.17 |82.67 |87.57 | 82.67 | 86.35 |82.48 |[83.11 | 83.11 | 82.67 | 83.97

B. stylosanthis BR 446T (NZ LVEM01000003)  68.28 (71.68 |67.97 |71.68 | 68.04 |71.93 |68.22 | 68.22 | 71.68 | 66.56
B. tropiciagri SEMIA 6148T (LFLZ01000014) 81.04 [82.99 |80.41 |82.99 |80.11 |[83.18 |85.73 | 85.73 | 82.99 | 83.51
B. valentinum LmjM3T (JX518540) 73.37 |77.01 |72.68 |77.01 |71.81 |77.24 |77.03 | 77.03 | 77.01 | 74.65
B. viridifuturi SEMIA 690T (LGTB01000005) 79.07 |82.48 |78.43 |82.48 | 78.10 |82.66 |85.22 | 85.22 | 82.48 | 83.17
B. yuanmingense CCBAU 10071T (KC509193) (89.41 |82.93 (89.59 | 8293 |&88.03 |82.74 |83.87 | 83.87 | 82.93 | 85.02

The strains NEHU-SC20 and NEHU-SC21 isolated from Khliehriat (Jaifitia Hills)
clustered together and formed a clade C2(T-III) divergent from B. kavangense 14-3T (KM378254)
isolated from Vigna unguiculata, Namibia. And the last clade C3(T-VI) that includes the strains
NEHU-DP7 and NEHU-SC6 isolated from Kynshi (West Khasi Hills) and NEHU (East Khasi
Hills) respectively, formed a clade divergent from B. dagingense CCBAU 15774T (KF962701)
isolated from Glycine max, Canada. The lineage L1(T-II) includes the strain NEHU-SC16 isolated
from Nongstoifi (West Khasi Hills) divergent from B. elkanii USDA 76T (AB094963) isolated
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from Japan. The strain NEHU- SC28 isolated from Umroi (Ri-Bhoi), formed a single lineage L.2
(T-IV) divergent from B. arachidis CCBAU 051107T (KF962700) isolated from Arachis
hypogaea, Canada. The strain NEHU-SC13 isolated from Mawthadraishan (West Khasi Hills),
formed a single lineage L3(T- V) and divergent from B. yuanmingense CCBAU 10071T
(EU818927) isolated from G. max (Fig 9).

3.9.3. Phylogenetic analysis of the Bradyrhizobium strains on the basis of nodA-nifH gene
phylogeny

The symbiotic genes phylogeny was found to be congruent with the housekeeping gene
phylogeny suggesting the vertical inheritance was seen to occur in Bradyrhizobium strains. The
phylogenetic tree with nodA-nifH genes, a concatenated tree was constructed (Fig 10) and
percentage similarity with the type strains was calculated (Table 6).

Table 6. NCBI GenBank accession numbers of strains isolated from D. polycarpum and S. ciliata.
Strains | 16S rRNA ‘ recA | atpD ‘ ginll | nodA | nifH

GenBank accession numbers of strains isolated from D. polycarpum

NEHU-DP 7 OP673531 OP604030 OP603967 OP603976 OP604003 0OP603993
NEHU-DP 8 - OP604031 OP603968 OP604004 0OP603994
NEHU-DP 19 - OP604032 - -
NEHU-DP 22 - OP604033 - -
NEHU-DP 23 - OP604034 - -
NEHU-DP 24 - OP604035 - -

GenBank accession numbers of strains isolated from S. ciliata

NEHU-SC 6 - OP603984 - - OP604005 0OP603995
NEHU-SC 8 - - - -

NEHU-SC 12 - OP603985 OP603969 OP603977 OP604006 OP603996
NEHU-SC 13 OP673532 OP603986 OP603970 OP603978 OP604007 OP603997
NEHU-SC 15 OP673533 OP603987 - - OP604008

NEHU-SC 16 OP673534 OP603988 0OP603971 OP603979 OP604009 OP603998
NEHU-SC 20 - OP603989 0OP603972 OP603980 OP604010 OP603999
NEHU-SC 21 - OP603990 OP603973 OP603981 OP604011 OP604000
NEHU-SC 23 OP673535 OP603991 OP603974 OP603982 OP604012 OP604001
NEHU-SC 28 OP673536 0OP603992 OP603975 OP603983 OP604013 OP604002

The strains NEHU-SC12, NEHU-SC23, NEHU-DP8 and NEHU-SC16 isolated from
Mawthadraishan (West Khasi Hills), Umling (Ri-Bhoi), Mawthadraishan and Nongstoin (West
Khasi Hills) clustered together to form a clade divergent from B. elkanii USDA 76T (AM117554)
isolated from G. max, USA.
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55 | @ NEHU-SC-23 (OP673535)

‘— @ NEHU-SC-28 (OP673536)
@ NEHU-SC-16 (OP673534)
Bradyrhizobium sp. EHJO8 (KP694008)
B. stylosanthis BR 446 T (KU724142)
B. ottawaense OO99T (JN186270)
B. iriomotense EKO5T (NR 112671)
B. guangxiense CCBAU 53363T (KC508877)
B. dagingense CCBAU 15774T (NR 118648)
B. centrosemae A9T (KC247115)
B. embrapense CNPSo 2833T (AY904773)
B. ingae BR 102507 (KF927043)
B. neotropicale BR 10247T (KF927051)
B. retamae Ro19T (NR 118548)
B. virid#uturi SEMIA 690T (FJ025107)
—— B. jicamae PAC68T (NR 043036)
@ NEHU-SC-15 (OP673533)
B. betae PL7THGTT (NR 029104)
B. americanum CMVUA4T (KU991833)
B. etkanii USDA 76T (NR 036953)
B. icense LMTR 13T (KF896156)
B. Eaoningense USDA 3622T (NR 041785)
B. paxBaeri LMTR 21T (A Y923031)
B. valentinum LmjM3T (NR 125638)
Bradyrhizobium sp. EHNEHUG (KP694007)
B. exythrophiei CCBAU 53325T (KF114645)

B. ferriligni CCBAU 51502T (K.J818096)

| B. diaznefficiens USDA 110T (NR 074322)
B. huanghuaihaiense CCBAU 233037 (NR 117945)
B. inbiabi CCBAU 23086T (NR 117513)
B. pachyrhizi PAC48T (NR 043037)
B. tropiciagri CNPSo 11127 (AY904753)
Bradyrhizobium sp. EHJO10 (KP694009)

B. canariense BTA-1T (NR 042177)
5| B-Jmponicum USDA 6T (NR 036865)

B. macuxiense BR 103037 (KX527919)

B. denitrificans L MG 8443T (NR 118982)
?' B. oligotrophicum S58T (NR 102489)
B. arachidis CCBAU 051107T (NR 117791)
B_kavangense 1437 (KP899562)
B. subterraneum 58 2-1T (KP308152)
B. vignae 7-2T (KP899563)
B. yuanmingense BO71T (NR 028768)
B. centrolobii BR 10245T (KF927049)
B. cytisi CTAWTTT (NR 116360)
B. ganzhouense RITFB06T (JQ796661)
B. guangdongense CCBAU 516497 (KC508867)
B_manausense BR 33517 (HQ641226)
B. rifense CTAWT71T (NR 116361)
54| Bradyrhizobium sp. FVMY14 (KP694013)
@ NEHU-DP-7 (OP673531)

Bradyrhizobium sp. FVJONG 14 (KP694012)
Bradyrhizobium sp. EHNS 18 (KP694010)

Bradyrhizobium sp. EHUS6 (KP694006)
;‘4 Bradyrhizobium sp. FVNS 4 (KP694011)
@ NEHU-SC-13 (OP673532)

Ensifer fredii USDA 205T (NR 036957)

16S rRNA

Fig 2. Phylogenetic analysis of 16S rRNA gene of Bradyrhizobium strains with other type strains using Maximum
Likelihood method. Bootstrap values are indicated at the internodes for 1000 replications and 1% substitutions are
indicated on the scale bar. Accession numbers obtained are shown in parenthesis.
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_saf Bradyrhizobium sp. EHUS6 (KY271007)
recA '*'{ Bradyrhizobium sp. FYMY14 (KY271009)
l € NEHU-SC-13 (OP603986
x| — Bradyrhizobium sp. EHNS18 (KY271006)
o @® NEHU-DP-7 (OP604030)
= @® NEHU-DP-23 (OP604034
Bradyrhizobium sp. FYNS4 (KY271010)
® NEHU-DP-22 (OP604033
: ® NEHU-DP-19 (OP604032
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Fig 3. Phylogenetic analysis of recA gene of Bradyrhizobium strains with other type strains using Maximum
Likelihood method. Bootstrap values are indicated at the internodes for 1000 replications and 2% substitutions are
indicated on the scale bar. Accession numbers obtained are shown in parenthesis.
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Fig 4. Phylogenetic analysis of afpD gene of Bradyrhizobium strains with other type strains using Maximum
Likelihood method. Bootstrap values are indicated at the internodes for 1000 replications and 5% substitutions are

indicated on the scale bar. Accession numbers obtained are shown in parenthesis.
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Fig 5. Phylogenetic analysis of glnll gene of Bradyrhizobium strains with other type strains using Maximum
Likelihood method. Bootstrap values are indicated at the internodes for 1000 replications and 2% substitutions are
indicated on the scale bar. Accession numbers obtained are shown in parenthesis.
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Fig 6. Comparative phylogenetic analysis of concatenated recA-glnlI-atpD-rrs gene of Bradyrhizobium strains using
Maximum Likelihood method. Bootstrap values are indicated at the internodes for 1000 replications and 2 %
substitutions are indicated on the scale bar. Accession numbers obtained are in the parenthesis.
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Fig 7. Comparative phylogenetic analysis of concatenated recA-ginll-atpD gene of Bradyrhizobium strains using
Maximum Likelihood method. Bootstrap values are indicated at the internodes for 1000 replications and 2 %
substitutions are indicated on the scale bar. Accession numbers obtained are in the parenthesis
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Fig 8. Phylogenetic analysis of nodA gene of Bradyrhizobium strains with other type strains using Maximum
Likelihood method. Bootstrap values are indicated at the internodes for 1000 replications and 1% substitutions are
indicated on the scale bar. Accession numbers obtained are shown in parenthesis.
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Fig 9. Phylogenetic analysis of nifH gene of Bradyrhizobium strains with other type strains using Maximum
Likelihood method. Bootstrap values are indicated at the internodes for 1000 replications and 2% substitutions are
indicated on the scale bar. Accession numbers obtained are shown in parenthesis.
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Fig 10. Phylogenetic analysis of nodA-nifH gene of Bradyrhizobium strains with other type strains using Maximum
Likelihood method. Bootstrap values are indicated at the internodes for 1000 replications and 5 % substitutions are
indicated on the scale bar. Accession numbers obtained are shown in parenthesis.
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Similarly, strains NEHU-SC20 and NEHU-SC21, both were isolated from Khliehriat
(Jaintia Hills) clustered together to form a clade divergent from B. viridifuturi SEMIA 690T
(LGTB01000005) and the strains NEHU-DP7 and NEHU-SC6 isolated from Kynshi (West Khasi
Hills) and NEHU (East Khasi Hills) respectively, clustered together divergent from B. japonicum
USDA 6T (AM117545) isolated from G. max, Japan. The strains NEHU-SC28 and NEHU-SC13
isolated from Umroi (Ri-Bhoi) and Mawthadraishan (West Khasi Hills), each formed a separate
lineage divergent from B. forestalis INPAS4BT (PGVGO01000037) and B. japonicum USDA 6T
(AM117545) isolated from G. max, Japan, respectively. The NCBI accession numbers provided
by GenBank for the housekeeping genes and symbiotic genes are given in Table 6.

4. Conclusion

In the present study, the BLASTN sequence similarity results of the recA gene of the
genetically diverse strains isolated from D. polycarpum and S. ciliata revealed that all strains may
belong to the genus Bradyrhizobium. The recA gene phylogenetic analysis of the Bradyrhizobium
strains isolated from Meghalaya gives an insight into the wide distribution of other similar
Bradyrhizobium strains that were isolated from different regions of the world and their biological
origins. The strains NEHU-SC13 (L1-TI), NEHU-DP7 and NEHU-DP23 (CI1-TII), NEHU-
DP22, NEHU-DP19 and NEHU-DP24 (C2-TIII) clustered in a separate clade close to B.
sacchari BR10280T (KX065095) isolated from Brazil. Interestingly, the Bradyrhizobium strains
from D. polycarpum (NEHU-DP7 and NEHU-DP23 (C1-TII), NEHU-DP22, NEHU-DP19 and
NEHU-DP24 (C2-TIII) and S. ciliata (NEHU-SC13 (L1-TI), in the present study, were also found
to be close to or clustered with the Bradyrhizobial strains that was isolated from nodules of F.
chinense and F. vestita (Ojha et al., 2017) and divergent from the Bradyrhizobium strains isolated
from C. pumila (Rathi et al., 2018) that are native to Meghalaya, in recA4 phylogeny. The phylogeny
of the symbiotic genes (nodA and nifH) of the Bradyrhizobium strains isolated from the two native
legumes, D. polycarpum and S. ciliata growing in acidic soils were congruent with their house-
keeping gene phylogeny.

The nifH gene derived phylogenetic tree was congruent with that of the nod4 genes-based
information. The strains of nodA group/type-1 (NEHU-SC12, NEHU-SC23 and NEHU-DPS) and
strain NEHU-SC16 that formed a single lineage close to, but divergent of B. elkanii USDA 76T
isolated from G. max, USA. The strains NEHU-SC6 and NEHU-SCI15 clustered together forming
a novel clade (C3) and strains NEHU-SC13 and NEHU-DP7 formed a single lineage close to, but
divergent from B. japonicum USDA 6T isolated from G. max, Japan. In the present study, the
phylogenetic analysis of symbiotic genes indicated that the vertical transfer of symbiotic and
fixation genes occurred in the Bradyrhizobium strains isolated from D. polycarpum and S. ciliata
which is supported by the previous result with a wide range of bradyrhizobia from various host
and environments (Moulin et al., 2004; Ojha et al., 2017; Rathi et al., 2018).
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